Abstract

The linear-array lidar has been recently developed and applied for its superiority of vertically non-scanning, large field of view, high sensitivity and high precision. The beam shaper is the key component for the linear-array detection. However, the traditional beam shaping approaches can hardly satisfy our requirement for obtaining unbiased and complete backscattered intensity data. The required beam distribution should roughly be oblate U-shaped rather than Gaussian or uniform. Thus, an optimal beam shaping approach is proposed in this paper. By employing a pair of conical lenses and a cylindrical lens behind the beam expander, the expanded Gaussian laser was shaped to a line-shaped beam whose intensity distribution is more consistent with the required distribution. To provide a better fit to the requirement, off-axis method is adopted. The design of the optimal beam shaping module is mathematically explained and the experimental verification of the module performance is also presented in this paper. The experimental results indicate that the optimal beam shaping approach can effectively correct the intensity image and provide ~30% gain of detection area over traditional approach, thus improving the imaging quality of linear-array lidar.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call