Abstract

The influence of vacuum polarization effects on the interactions of multiple ultra-intense lasers with plasmas is discussed. The nonlinear paraxial monochromatic model of the interactions has been improved by considering the Heisenberg–Euler Lagrangian density of two laser processes. Comparing the corrections of vacuum polarization effects in the collision of laser beams with one generated by a single intense laser, we find that the former has a higher order of magnitude correction. The laser collision also produces variations in the propagation direction and polarization direction of the lasers propagating in the plasma. In addition, the strong-field quantum electrodynamic (QED) effects can be enhanced by increasing the laser intensity or frequency difference, or by adjusting the incident angles of the two laser beams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call