Abstract
AFM-based nanomechanical measurements are powerful tools for the characterization of polymer composites. However, a flat surface of the samples is usually required, which restricts the wide applications of nanomechanical measurements. In this work, the height-fluctuation induced systematic errors were investigated taking polystyrene beads as the model sample. Corrections were further made based on the assumption that the components of force and deformation parallel to the sample surface can be approximately ignored. Results show the deviations of force and deformation due to height-fluctuations can be well corrected by the proposed method. Moreover, the reliability of the corrected force curves was further verified in the calculation of the mechanical properties. Young's moduli value without height-gradient dependency can be obtained by applying both Johson-Kendall-Roberts (JKR) model and Derjaguin-Muller-Toporov (DMT) model. The correction method proposed in this work can broaden the applications of AFM-based nanomechanical measurements on polymers without strict restrictions on the surface flatness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.