Abstract

Tailed duplex (TD) DNAs, prepared by annealing an oligonucleotide to a several-hundred-base single-stranded (ss) DNA fragment, correct a base-substitution mutation with high efficiency. In the present study, the abilities of TD fragments to correct single-base insertion and deletion mutations were examined, using hygromycin-resistance and enhanced green fluorescent protein fusion (Hyg-EGFP) genes inactivated by +G and -C frameshift mutations. The 5'-TD and 3'-TD DNA fragments were co-transfected with plasmid DNA containing the inactivated Hyg-EGFP gene into CHO-K1 cells, and the gene correction efficiencies were determined by introducing the plasmid DNA recovered from the transfected cells into Escherichia coli cells. In contrast to their efficiencies for the substitution mutation, the gene correction abilities of the TD fragments were relatively low. The correction efficiencies by the TD fragments were apparently higher than that by a ss DNA fragment, one of the DNA fragments employed for gene correction. These results suggest that the TD fragments have the potential to correct frameshift mutations, although further improvement is required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.