Abstract

The ability of lysosomal enzymes to be secreted and subsequently captured by adjacent cells provides an excellent basis for investigating different therapy strategies in lysosomal storage disorders. Aspartylglucosaminuria (AGU) is caused by deficiency of aspartylglucosaminidase (AGA) leading to interruption of the ordered breakdown of glycoproteins in lysosomes. As a consequence of the disturbed glycoprotein catabolism, patients with AGU exhibit severe cell dysfunction especially in the central nervous system (CNS). The uniform phenotype observed in these patients will make effective evaluation of treatment trials feasible in future. Here we have used fibroblasts and lymphoblasts from AGU patients and murine neural cell lines as targets to evaluate in vitro the feasibility of enzyme replacement and gene therapy in the treatment of this disorder. Complete correction of the enzyme deficiency was obtained both with recombinant AGA enzyme purified from CHO-K1 cells and with retrovirus-mediated transfer of the AGA gene. Furthermore, we were able to demonstrate enzyme correction by cell-to-cell interaction of transduced and nontransduced cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.