Abstract
Free-space quantum key distribution links in urban environment have demanding operating needs, such as functioning in daylight and under atmospheric turbulence, which can dramatically impact their performance. Both effects are usually mitigated with a careful design of the field of view of the receiver. However, a trade-off is often required, since a narrow field of view improves background noise rejection but it is linked to an increase in turbulence-related losses. In this paper, we present a high-speed automatic tracking system to overcome these limitations. Both a reduction in the field-of-view to decrease the background noise and the mitigation of the losses caused by atmospheric turbulence are addressed. Two different designs are presented and discussed, along with technical considerations for the experimental implementation. Finally, preliminary experimental results of beam wander correction are used to estimate the potential improvement of both the quantum bit error rate and secret key rate of a free space quantum key distribution system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.