Abstract

To evaluate and quantify a scheme for correcting susceptibility artifacts in spin-echo echo-planar-imaging-based dynamic susceptibility contrast (DSC) perfusion MRI of high-grade gliomas at 3 Tesla. Sixteen patients with a total of 78 scans were studied. DSC-MRI images were corrected using a displacement map generated from opposite phase-encoding polarity images. Two methods were used for quantification in the correction: (i) linear regression of pixel-by-pixel comparisons, performed both globally and relative to the anterior and posterior commissure plane (AC-PC plane), of T2-weighted images with both corrected and uncorrected raw DSC images; and (ii) counting significant (>2.0) normalized cerebral blood volume (nCBV) pixels from perfusion maps in the tumor region of interest. Sixty-four of 78 datasets showed significant differences in the coefficient of correlation (r2) values. The difference between corrected and uncorrected r2 values was positive in all but one patient. Correction of B0- distortion significantly improved r2 in slices around the AC-PC plane. In 62% of the datasets, we observed an increased number of significant pixels in the corrected nCBV maps; 36% showed more significant pixels in uncorrected nCBV maps; 1% showed no difference. Distortion correction of DSC-MRI may provide improved accuracy compared with uncorrected data, especially for tumors located below the corpus callosum and near the frontal sinuses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call