Abstract

Among Brazilian soils orders, there are some of it classified as acid soils, which need correction to guarantee crop productivity. Currently, limestone is the most used soil corrective and wood ash has been a sustainable alternative to this process. Thus, the objective was to evaluate the effect of two correctives of soil acidity on an Oxisol collected in the Brazilian Cerrado area using limestone and wood ash and the effect of soil correction on initial growth of cowpea. Two greenhouse experiments were carried out: 1) with limestone, using base saturation levels (V%) of 0, 20, 40, 60 and 80; and 2) wood ash, with doses of 0, 8, 16, 24 and 32 g⋅dm−3, both in five randomized blocks. At 40 days after sowing, it was verified that pH values were within the range considered ideal for soil (pH of 5 to 7), according to the increase of base saturation levels and wood ash doses, but limestone provided faster results. Initial growth of cowpea was positively influenced by soil correction with use of both correctives. Wood ash and limestone increased soil pH to adequate values and resulted in better initial crop development.

Highlights

  • Among the diversity of soil orders existing between the various Brazilian regions, there are some that present calcium, magnesium and phosphorus deficiency

  • At 10 days after experiments beginning it was observed that soil pH values in distilled water and CaCl2 solution, both using limestone and wood ash, were significantly influenced by applied doses

  • The increase was 10.39% for limestone in distilled water and 24.06% for CaCl2 solution, with soil pH adjusting to the quadratic and linear regression model, respectively, comparing in the highest base saturation dose (80%)

Read more

Summary

Introduction

Among the diversity of soil orders existing between the various Brazilian regions, there are some that present calcium, magnesium and phosphorus deficiency. These soils are known as acid soils. These soils contain high concentration of aluminum and manganese, being necessary the use of liming to increase. In relation to the correctives used in agricultural system limestone is the most applied, being extracted from rocks composed of calcite, a mineral that contains calcium carbonate. The incorporation has to be very well done, in order to guarantee the maximum possible contact of corrective with soil so that the chemical reactions that will result in increase of soil pH occur [3] [4]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call