Abstract
Susceptibility-induced distortion is one of the major artifacts in echo-planar imaging (EPI), and many solutions have been proposed for the problem, including the Fourier method and the point spread function (PSF) method. In this paper, a framework unifying both methods is presented. Under this framework, a model-based PSF method is proposed in which the PSF of the source object is modeled along with a single field map measured by TE-offset reference scans. EPI images of a phantom and a healthy human subject were acquired, and the results of distortion correction by the Fourier method, linear interpolation method, and the model-based PSF method were compared. The results showed that the model-based PSF method could correct for geometric distortion and signal intensity distortion satisfactorily, avoiding the rippling artifact shown in the Fourier method. In conclusion, the proposed framework gave us an overall picture of how different correction methods work. The model-based PSF method, which required fewer reference scans and less computational load, was more clinically feasible than other methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.