Abstract

This article reports an investigation of an inverse-filter method to correct for experimental underestimation of pressure due to spatial averaging across a hydrophone sensitive element. The spatial averaging filter (SAF) depends on hydrophone type (membrane, needle, or fiber-optic), hydrophone geometrical sensitive element diameter, transducer driving frequency, and transducer F number (ratio of focal length to diameter). The absolute difference between theoretical and experimental SAFs for 25 transducer/hydrophone pairs was 7% ± 3% (mean ± standard deviation). Empirical formulas based on SAFs are provided to enable researchers to easily correct for hydrophone spatial averaging errors in peak compressional pressure ( pc ), peak rarefactional pressure ( pr ), and pulse intensity integral. The empirical formulas show, for example, that if a 3-MHz, F /2 transducer is driven to moderate nonlinear distortion and measured at the focal point with a 500- [Formula: see text] membrane hydrophone, then spatial averaging errors are approximately 16% ( pc ), 12% ( pr ), and 24% (pulse intensity integral). The formulas are based on circular transducers but also provide plausible upper bounds for spatial averaging errors for transducers with rectangular-transmit apertures, such as linear and phased arrays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.