Abstract

Echo-planar imaging (EPI) is vulnerable to geometric distortion and N/2 ghosting. These artifacts can be analyzed with an intuitive k-t space tool, and here we propose a simple method for their correction. In a slightly modified additional EPI acquisition, we sample the k-t space with a shift in k(y) by adding a small area to the phase-encoding (PE) gradient. Physically, the added gradient area creates a relative phase ramp across the object and directly encodes the undistorted original y-coordinate of each voxel into a phase difference between two distorted complex images, in a method called "phase labeling for additional coordinate encoding" (PLACE). The phase information is then used to map the mismapped signals back to their original locations for geometric and intensity correction. Smoothing of expanded complex data matrix effectively reduces noise in the differential phase map and allows subpixel warping. The two acquired images can also be averaged to effectively suppress the N/2 ghost. Efficient correction for both artifacts can be achieved with three acquisitions. These acquisitions can also serve as reference scans to correct for geometric distortion and/or N/2 ghost artifacts on all images in a time series. The technique was successfully demonstrated in phantom and animal studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call