Abstract

There are many industrial examples of low Reynolds number non-Newtonian flows through rectangular ducts in polymer processing. They occur in all types of manufacturing processes in which raw polymeric materials are converted into products, ranging from screw extrusion to shaping operations in dies and molds. In addition, they are found in numerous rheological measurement systems. The literature provides various mathematical formulations for non-Newtonian flows through rectangular ducts, but-if not simplified further-their solution usually requires use of numerical techniques. Removing the need for these time-consuming techniques, we present novel analytical correction factors for the drag and pressure flows of power-law fluids in rectangular flow channels. We approximated numerical results for a fully developed flow under isothermal conditions using symbolic regression based on genetic programming. The correction factors can be applied to the analytical theory that describes the flow of power-law fluids between parallel plates to include effects of the side walls in the prediction of flow rate and viscous dissipation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call