Abstract

A correction is proposed to the Delta function convolution method (DFCM) for fitting a multiexponential decay model to time-resolved fluorescence decay data using a monoexponential reference fluorophore. A theoretical analysis of the discretised DFCM multiexponential decay function shows the presence an extra exponential decay term with the same lifetime as the reference fluorophore that we denote as the residual reference component. This extra decay component arises as a result of the discretised convolution of one of the two terms in the modified model function required by the DFCM. The effect of the residual reference component becomes more pronounced when the fluorescence lifetime of the reference is longer than all of the individual components of the specimen under inspection and when the temporal sampling interval is not negligible compared to the quantity (τR−1 – τ−1)−1, where τR and τ are the fluorescence lifetimes of the reference and the specimen respectively. It is shown that the unwanted residual reference component results in systematic errors when fitting simulated data and that these errors are not present when the proposed correction is applied. The correction is also verified using real data obtained from experiment.

Highlights

  • Fluorescence lifetime measurements have a range of photophysical, biological and biomedical applications

  • The fluorescence lifetime can report on the local environment or state of the fluorophore and it can be used to distinguish between particular fluorescent species

  • The temporal instrument response function (IRF), which is the apparent signal that is measured for an ideal Dirac Delta function input signal, typically presents a FWHM on the order of a few 100’s of picoseconds and its shape is often complex with sub-structure that distorts the measured fluorescence decay profiles of specimens under inspection

Read more

Summary

Introduction

Fluorescence lifetime measurements have a range of photophysical, biological and biomedical applications. The temporal instrument response function (IRF), which is the apparent signal that is measured for an ideal Dirac Delta function input signal, typically presents a FWHM on the order of a few 100’s of picoseconds and its shape is often complex with sub-structure that distorts the measured fluorescence decay profiles of specimens under inspection This is of particular importance when the specimen exhibits a multi-exponential fluorescence decay, since the impact of the IRF on the measured signal (which is the convolution of the actual fluorescence signal with the IRF) can distort the apparent contributions of the individual decay components to the recovered

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call