Abstract

Di-(2-ethylhexyl) phthalate (DEHP) is extensively used in many personal care and consumer products, which has resulted in widespread human exposure. Limited studies have suggested that exposure to DEHP may affect thyroid function, but little is known about the effect and mechanisms of DEHP exposure on the hypothalamic-pituitary-thyroid axis (HPTA). The present study was conducted to elucidate the potential mechanisms in which DEHP disrupts the function of the HPTA. Wistar rats were administered DEHP by gavage at 0, 5, 50, and 500 mg/kg/day for 28 days and then sacrificed within 24 h following the last dose. Hormones of HPTA was quantified with radioimmunoassay and enzyme-linked immunosorbent assay, protein levels of thyrotropin-releasing hormone receptor (TRHR) and thyroid-stimulating hormone receptor (TSHR) were analyzed by Western blot and immunohistochemistry, expression levels of TRHR and TSHR mRNA were measured by quantitative real-time PCR. Rats treated with DEHP resulted in increased bodyweight, on the HPTA, down-regulated the protein levels of TRH in the hypothalamus, up-regulated the protein and mRNA levels of TRHR in the pituitary, down-regulated mRNA expression of TSHR in the thyroid, while the difference of TSH in various dose groups was not statistically significant and T3, T4, FT3, FT4 levels in serum were decreased compared with control. DEHP could interfere with the balance of HPTA of adolescent rats, and increase the body weight, down-regulate the homeostasis of thyroid related hormones and receptors expression levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call