Abstract

Abstract. Thornthwaite’s formula is globally an optimum candidate for large scale applications of potential evapotranspiration and aridity assessment at different climates and landscapes since it has the lower data requirements compared to other methods and especially from the ASCE-standardized reference evapotranspiration (former FAO-56), which is the most data demanding method and is commonly used as benchmark method. The aim of the study is to develop a global database of local coefficients for correcting the formula of monthly Thornthwaite potential evapotranspiration (Ep) using as benchmark the ASCE-standardized reference evapotranspiration method (Er). The validity of the database will be verified by testing the hypothesis that a local correction coefficient, which integrates the local mean effect of wind speed, humidity and solar radiation, can improve the performance of the original Thornthwaite formula. The database of local correction coefficients was developed using global gridded temperature and Er data of the period 1950–2000 at 30 arc-sec resolution (~1 km at equator) from freely available climate geodatabases. The correction coefficients were produced as partial weighted averages of monthly Er / Ep ratios by setting the ratios’ weight according to the monthly Er magnitude and by excluding colder months with monthly values of Er or Ep can be assessed using the following link: https://doi.pangaea.de/10.1594/PANGAEA.932638 (Aschonitis et al., 2021).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call