Abstract

We describe a method for reducing displacements in radio source positions caused by ionospheric refraction. Our method is an improvement on that used by Wild et al. (1959), who assumed all frequencies in the 40-70 MHz band came from the same position above the Sun and applied an f-2 correction for ionospheric refraction. Our method retains the dispersion of source position with frequency, which is inherent in the radio source, but allows for the f-2 ionospheric effect. We also discuss ways of estimating the absolute source positions from a knowledge of ionospheric density gradients. A typical example of ionospheric variations on solar records is shown in Figure 1(a). Here we have plotted the observed source positions on an f-2 scale. The measurements refer to a solar storm continuum burst which occurred on 1981 May 9 following an importance 2B flare at 08°N., 38°E., heliographic coordinates. From previous observations of such events we think it highly likely that the true source positions are stationary and displaced with decreasing frequency outwards along a line close to the radial direction above the flare. Figure 1(a) shows that: (a) the 160, 80 and 43 MHz source displacements vary as f-2; (b) there is a systematic slow drift of the source positions towards the south and east which increases with increasing hour angle; (c) superimposed on this steady drift is a quasi-periodic variation in source position with a period ~20 min.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call