Abstract

There are many ways to integrate reservoir and production system simulations to forecast production, in a single model (implicit) or in coupled models (explicit). Explicit coupling, a simple and flexible coupling method, has the advantage of using commonly available commercial software to integrate reservoir and production systems simulations. However, explicit coupling may produce large deviations as the inflow performance relationship (IPR) curve, which combines well pressure and production and injection rates, can only be evaluated or amended at the beginning of a time-step. As the IPR curve changes during a time-step, it may be necessary to correct unstable results for well pressure and rates. Using a previously proposed IPR correction method, numerical stability was improved, reducing deviations during advancing the time step. A formula was created to support the correction of IPR curve. The methodology was tested using cases with known responses for pressures and flow rates, for a predetermined production strategy from the benchmark case UNISIM-I-D. Deviations were reduced to near zero when compared with uncoupled and decoupled methodologies to integrate reservoir with production system simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.