Abstract
PurposeSurvival analysis is increasingly being used in perinatal epidemiology to assess time-varying risk factors for various pregnancy outcomes. Here we show how quantitative correction for exposure misclassification can be applied to a Cox regression model with a time-varying dichotomous exposure. MethodsWe evaluated influenza vaccination during pregnancy in relation to preterm birth among 2267 non-malformed infants whose mothers were interviewed as part of the Slone Birth Defects Study during 2006 through 2011. The hazard of preterm birth was modeled using a time-varying exposure Cox regression model with gestational age as the time-scale. The effect of exposure misclassification was then modeled using a probabilistic bias analysis that incorporated vaccination date assignment. The parameters for the bias analysis were derived from both internal and external validation data. ResultsCorrection for misclassification of prenatal influenza vaccination resulted in an adjusted hazard ratio (AHR) slightly higher and less precise than the conventional analysis: Bias-corrected AHR 1.04 (95% simulation interval, 0.70–1.52); conventional AHR, 1.00 (95% confidence interval, 0.71–1.41). ConclusionsProbabilistic bias analysis allows epidemiologists to assess quantitatively the possible confounder-adjusted effect of misclassification of a time-varying exposure, in contrast with a speculative approach to understanding information bias.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.