Abstract

Several single-molecule studies aim to reliably extract parameters characterizing molecular confinement or transient kinetic trapping from experimental observations. Pioneering works from single-particle tracking (SPT) in membrane diffusion studies [Kusumi et al., Biophys. J. 65, 2021 (1993)] appealed to mean square displacement (MSD) tools for extracting diffusivity and other parameters quantifying the degree of confinement. More recently, the practical utility of systematically treating multiple noise sources (including noise induced by random photon counts) through likelihood techniques has been more broadly realized in the SPT community. However, bias induced by finite-time-series sample sizes (unavoidable in practice) has not received great attention. Mitigating parameter bias induced by finite sampling is important to any scientific endeavor aiming for high accuracy, but correcting for bias is also often an important step in the construction of optimal parameter estimates. In this article, it is demonstrated how a popular model of confinement can be corrected for finite-sample bias in situations where the underlying data exhibit Brownian diffusion and observations are measured with non-negligible experimental noise (e.g., noise induced by finite photon counts). The work of Tang and Chen [J. Econometrics 149, 65 (2009)] is extended to correct for bias in the estimated "corral radius" (a parameter commonly used to quantify confinement in SPT studies) in the presence of measurement noise. It is shown that the approach presented is capable of reliably extracting the corral radius using only hundreds of discretely sampled observations in situations where other methods (including MSD and Bayesian techniques) would encounter serious difficulties. The ability to accurately statistically characterize transient confinement suggests additional techniques for quantifying confined and/or hop diffusion in complex environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.