Abstract

In recent years, a novel x-ray imaging modality has emerged that reveals unresolved sample microstructure via a “dark-field image”, which provides complementary information to conventional “bright-field” images, such as attenuation and phase-contrast modalities. This x-ray dark-field signal is produced by unresolved microstructures scattering the x-ray beam resulting in localised image blur. Dark-field retrieval techniques extract this blur to reconstruct a dark-field image. Unfortunately, the presence of non-dark-field blur such as source-size blur or the detector point-spread-function can affect the dark-field retrieval as they also blur the experimental image. In addition, dark-field images can be degraded by the artefacts induced by large intensity gradients from attenuation and propagation-based phase contrast, particularly around sample edges. By measuring any non-dark-field blurring across the image plane and removing it from experimental images, as well as removing attenuation and propagation-based phase contrast, we show that a directional dark-field image can be retrieved with fewer artefacts and more consistent quantitative measures. We present the details of these corrections and provide “before and after” directional dark-field images of samples imaged at a synchrotron source. This paper utilises single-grid directional dark-field imaging, but these corrections have the potential to be broadly applied to other x-ray imaging techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.