Abstract

Abstract A radiative transfer approach to the problem of atmospheric correction of satellite images in the solar spectral range is presented which includes all multiple scattering processes without any approximation. The numerical solution is accepted as satisfying, if the numerical accuracy is better than I per cent. This means that the accuracy of the atmospheric correction depends almost exclusively on the quality of the auxiliary data on the atmospheric state and the surface reflection indicatrix. Byextensivemodel calculations these parameter driven error bounds have been quantified. Thus the calculation results in a corrected albedo image with specified error bounds. This seems to be the first algorithm available for atmospheric correction of real imagery data which relies on a numerical exact treatment of multiple scattering. The program EXACT (EXact Atmospheric Correction Technique) has so far been used with Landsat Thematic Mapper (TM), NOAA AVHRR (National Oceanic and Atmospheric Administration A...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.