Abstract
An important problem with model averaging approach is the choice of weights. The Mallows criterion for choosing weights suggested by Hansen (2007) is the first asymptotically optimal criterion, which has been used widely. In the current paper, the authors propose a corrected Mallows model averaging (MMAc) method based on F distribution in small sample sizes. MMAc exhibits the same asymptotic optimality as Mallows model averaging (MMA) in the sense of minimizing the squared errors. The consistency of the MMAc based weights tending to the optimal weights minimizing MSE is also studied. The authors derive the convergence rate of the new empirical weights. Similar property for MMA and Jackknife model averaging (JMA) by Hansen and Racine (2012) is established as well. An extensive simulation study shows that MMAc often performs better than MMA and other commonly used model averaging methods, especially for small and moderate sample size cases. The results from the real data analysis also support the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.