Abstract
ABSTRACTLikelihood-ratio tests (LRTs) are often used for inferences on one or more logistic regression coefficients. Conventionally, for given parameters of interest, the nuisance parameters of the likelihood function are replaced by their maximum likelihood estimates. The new function created is called the profile likelihood function, and is used for inference from LRT. In small samples, LRT based on the profile likelihood does not follow χ2 distribution. Several corrections have been proposed to improve LRT when used with small-sample data. Additionally, complete or quasi-complete separation is a common geometric feature for small-sample binary data. In this article, for small-sample binary data, we have derived explicitly the correction factors of LRT for models with and without separation, and proposed an algorithm to construct confidence intervals. We have investigated the performances of different LRT corrections, and the corresponding confidence intervals through simulations. Based on the simulation results, we propose an empirical rule of thumb on the use of these methods. Our simulation findings are also supported by real-world data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.