Abstract

Obesity affects lung function and gas exchange and imposes mechanical ventilatory limitations during exercise that could disrupt the predictability of Pa(CO(2)) from end-tidal P(CO(2)) (P(ETCO(2))), an important clinical tool for assessing gas exchange efficiency during exercise testing. Pa(CO(2)) has been estimated during exercise with good accuracy in normal-weight individuals by using a correction equation developed by Jones and colleagues (P(JCO(2)) = 5.5 + 0.9 x P(ETCO(2)) – 2.1 x tidal volume). The purpose of this project was to determine the accuracy of Pa(CO(2)) estimations from P(ETCO(2)) and P(JCO(2)) values at rest and at submaximal and peak exercise in morbidly obese adults. Pa(CO(2)) and P(ETCO(2)) values from 37 obese adults (22 women, 15 men; age, 39 ± 9 y; BMI, 49 ± 7; [mean ± SD]) were evaluated. Subjects underwent ramped cardiopulmonary exercise testing to volitional exhaustion. P(ETCO(2)) was determined from expired gases simultaneously with temperature-corrected arterial blood gases (radial arterial catheter) at rest, every minute during exercise, and at peak exercise. Data were analyzed using paired t tests. P(ETCO(2)) was not significantly different from Pa(CO(2)) at rest (P(ETCO(2)) = 37 ± 3 mm Hg vs Pa(CO(2)) = 38 ± 3 mm Hg, P = .14). However, during exercise, P(ETCO(2)) was significantly higher than Pa(CO(2)) (submaximal: 42 ± 4 vs 40 ± 3, P < .001; peak: 40 ± 4 vs 37 ± 4, P < .001, respectively). Jones’ equation successfully corrected P(ETCO(2)), such that P(JCO(2)) was not significantly different from Pa(CO(2)) (submax: P(JCO(2)) = 40 ± 3, P = .650; peak: 37 ± 4, P = .065). P(JCO(2)) provides a better estimate of Pa(CO(2)) than P(ETCO(2)) during submaximal exercise and at peak exercise, whereas at rest both yield reasonable estimates in morbidly obese individuals. Clinicians and physiologists can obtain accurate estimations of Pa(CO(2)) in morbidly obese individuals by using P(JCO(2)).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.