Abstract
Generalized linear measurement error models, such as Gaussian regression, Poisson regression and logistic regression, are considered. To eliminate the effects of measurement error on parameter estimation, a corrected empirical likelihood method is proposed to make statistical inference for a class of generalized linear measurement error models based on the moment identities of the corrected score function. The asymptotic distribution of the empirical log-likelihood ratio for the regression parameter is proved to be a Chi-squared distribution under some regularity conditions. The corresponding maximum empirical likelihood estimator of the regression parameter π is derived, and the asymptotic normality is shown. Furthermore, we consider the construction of the confidence intervals for one component of the regression parameter by using the partial profile empirical likelihood. Simulation studies are conducted to assess the finite sample performance. A real data set from the ACTG 175 study is used for illustrating the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.