Abstract

The adsorption rate is an important parameter for accurate performance estimation of adsorbent-refrigerant based adsorption cooling cycles. Here, we have investigated the response of two adsorption kinetics models of activated carbon–ethanol pair by means of CFD simulation. The isothermal assumption used in estimating the diffusion time constant of Fickian diffusion and linear driving force (LDF) models led to divergence and under-estimated adsorption uptakes, respectively. By including the simulated adsorbent temperature profile in fitting of LDF model to experimental data, we assessed the non-isothermal diffusion time constants which were 2.5 to 5 times higher than those evaluated previously with isothermal assumption. The goodness of fitting, evaluated with coefficient of determination (R2), improved and became higher than 0.95 from 0.73 initially. The developed non-isothermal LDF equation allows accurate heat and mass transfer simulations and performance optimization of large scale adsorption/desorption bed employing activated carbon-ethanol pair for adsorption cooling applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.