Abstract

In the modern, multi-threaded, multi-core programming environment, correctly managing system resources, including locks and shared variables, can be especially difficult and errorprone. A simple mistake, such as forgetting to release a lock, can have major consequences on the correct operation of a program, by, for example, inducing deadlock, often at a time and location that is isolated from the original error. In this paper, we propose a new type-based approach to resource management, based on the use of dependent types to construct a Domain-Specific Embedded Language (DSEL) whose typing rules directly enforce the formal program properties that we require. In this way, we ensure strong static guarantees of correctness-by-construction, without requiring the development of a new special-purpose type system or the associated special-purpose soundness proofs. We also reduce the need for “over-serialisation”, the overly-conservative use of locks that often occurs in manually constructed software, where formal guarantees cannot be exploited. We illustrate our approach by implementing a DSEL for concurrent programming and demonstrate its applicability with reference to an example based on simple bank account transactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call