Abstract
Irradiation of etiolated Arabidopsis or pea, or dim-red-light-grown pea seedling with a single, short (under 10 s) pulse of blue light (threshold at 0.1 mumol/m2) is sufficient to induce the expression of specific members of the Lhcb gene family including the pea Lhcb1*4 gene and the Arabidopsis Lhcb1*3 gene. Other Lhcb genes, such as the pea Lhcb1*3 gene and the Arabidopsis Lhcb1*1 and 1*2 genes are unaffected by this blue-light treatment. Transgenic Arabidopsis bearing pea Lhcb1*3::Gus (beta-glucuronidase), pea Lhcb1*4::Gus or Arabidopsis Lhcb1*3::Gus constructs were used to determine if pea and Arabidopsis employ a similar mechanism to achieve blue-light induced Lhcb expression. Examination of the respective Gus expression patterns in white-light-grown seedlings indicates that the pea promoters are active and properly expressed in the Arabidopsis background. Irradiation of dark-grown Arabidopsis with a 20 s pulse of blue light with a total fluence of 100 mumol/m-2 results in expression of the pea Lhcb1*4::Gus (beta-glucuronidase) construct, but not of the pea Lhcb1*3::Gus construct indicating that the pea promoters respond correctly to blue light in the Arabidopsis background. Fluence-response, time-course and reciprocity characteristics for the blue-light-induced expression of the pea Lhcb1*4::Gus construct closely resemble those of the endogenous Arabidopsis Lhcb genes, confirming the proper interpretation of the Arabidopsis blue-light-signaling mechanism by the pea Lhcb1*4 promoter and suggesting that the signaling mechanisms in the two plants are very similar, if not identical. Fluence response data for the steady-state level of transcript derived from an Arabidopsis Lhcb1*3::Gus construct extending 200 bp upstream of the site of transcription indicate that the blue light responsive elements(s) are contained within this 200 bp region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.