Abstract

The corpus callosum is the largest fiber bundle in the central nervous system and it takes part in several cognitive pathways. It can be affected by multiple sclerosis (MS) early in the disease. DTI is capable of infering the microstructural organization of the white matter. The vectorial analysis of the DTI offers the more specific indices of axial diffusivity (AD) and radial diffusivity (RD), which have shown to be useful to discriminate myelin damage from axon loss, respectively. This study presents DTI results (mean diffusivity (MD), fractional anisotropy (FA), RD, and AD) of 23 relapsing-remitting MS patients and its correlation with cognitive performance. There were 47.8% of cognitive impaired patients (MS CI). We found signs of demyelination, reflected by increased RD, and incipient axon loss, reflected by AD increase, which was slightly higher in the MS CI. The cognitive changes correlated with the DTI parameters, suggesting that loss of complexity in CC connections can impair neural conduction. Thus, cognitive impairment can be related to callosal disconnection, and DTI can be a promising tool to evaluate those changes.

Highlights

  • Cognitive impairment is one of the major factors affecting the social functioning and quality of life of multiple sclerosis (MS) patients, being described in 45–65% of the clinical cases [1, 2]

  • It has been proposed to include the application of multimodality neuropsychological tests (NPT) in the assessment of clinical stage of MS, which resulted in a more comprehensive scale, the multiple sclerosis functional composite (MSFC) [6, 7]

  • The purpose of this study is to determine by DTI whether the microstructure of the corpus callosum (CC) is already altered in MS patients with short disease duration, and to establish if these DTI parameters are correlated with observed cognitive disability

Read more

Summary

Introduction

Cognitive impairment is one of the major factors affecting the social functioning and quality of life of multiple sclerosis (MS) patients, being described in 45–65% of the clinical cases [1, 2]. The scales most commonly used for clinical classification of MS-related disability, such as the expanded disability status scale (EDSS) [3], are focused on locomotor dysfunction. Because of the multifocal characteristic of MS lesions, these traditional disability scales correlate poorly with cognitive disease-related changes in MS [4, 5]. It has been proposed to include the application of multimodality neuropsychological tests (NPT) in the assessment of clinical stage of MS, which resulted in a more comprehensive scale, the multiple sclerosis functional composite (MSFC) [6, 7]. Given the complexity of cognitive pathways and cortical and subcortical connectivity, it is difficult to identify a single isolated domain for each cognitive skill

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call