Abstract

The use of spontaneous bursts of muscle sympathetic nerve activity (MSNA) to assess arterial baroreflex control of sympathetic nerve activity has seen increased utility in studies of both health and disease. However, methods used for analyzing spontaneous MSNA baroreflex sensitivity are highly variable across published studies. Therefore, we sought to comprehensively examine methods of producing linear regression slopes to quantify spontaneous MSNA baroreflex sensitivity in a large cohort of subjects (n = 150) to support a standardized procedure for analysis that would allow for consistent and comparable results across laboratories. The primary results demonstrated that 1) consistency of linear regression slopes was considerably improved when the correlation coefficient was above -0.70, which is more stringent compared with commonly reported criterion of -0.50, 2) longer recording durations increased the percentage of linear regressions producing correlation coefficients above -0.70 (1 min = 15%, 2 min = 28%, 5 min = 53%, 10 min = 67%, P < 0.001) and reaching statistical significance (1 min = 40%, 2 min = 69%, 5 min = 78%, 10 min = 89%, P < 0.001), 3) correlation coefficients were improved with 3-mmHg versus 1-mmHg and 2-mmHg diastolic blood pressure (BP) bin size, and 4) linear regression slopes were reduced when the acquired BP signal was not properly aligned with the cardiac cycle triggering the burst of MSNA. In summary, these results support the use of baseline recording durations of 10 min, a correlation coefficient above -0.70 for reliable linear regressions, 3-mmHg bin size, and importance of properly time-aligning MSNA and diastolic BP. Together, these findings provide best practices for determining spontaneous MSNA baroreflex sensitivity under resting conditions for improved rigor and reproducibility of results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call