Abstract

AbstractElectron energy distribution in the Io plasma torus (IPT) is non‐Maxwellian. The “hot” components induce extreme ultraviolet radiation, although their energy source remains unknown. One potential mechanism that may preserve the energy of hot electrons is inwardly directed plasma motion in the Jovian magnetosphere. Therefore, understanding the high‐energy component of the electron energy distribution is important. The extreme ultraviolet spectrometer onboard the HISAKI satellite has started the observation of the IPT. We show that bright transient features in one ansa of the IPT correlate with those in the other ansa after 5 hr. Because it takes 5 hr (one half of the rotation cycle of Jupiter) for a batch of plasma to move from one ansa to the other, the correlation indicates that the transient features are identical and that they survive for greater than 5 hr. Since the time scale of the radiative cooling process is ~3 hr, this fact suggests that injected hot electrons survive against cooling via Coulomb collision with ambient electrons for greater than 2 hr. Assuming the relationship with the cooling time, we can deduce the hot electron temperature from the brightening duration. Here we report the occasional hot electron injections, presumed to exceed 150 up to 650 eV, into the IPT (approximately 15% out of all events). For the most of events, the temperature of injected electron is lower than 150 eV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.