Abstract

Voyager 1 plasma flow data are compared with a recent theory that predicted measurable departures from rigid corotation in Jupiter's magnetosphere as a consequence of rapid plasma production and weak atmosphere-magnetosphere coupling. The comparison indicates that the theory can account for the observed corotation lag, provided that the plasma mass production rate during the Voyager 1 encounter was rather larger than expected, namely approximately 10(30) atomic mass units per second.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.