Abstract

Retinoblastoma(Rb) is the most frequent primary intraocular tumor usually diagnosed in infants and children, and current therapy for such disease is still limited. Corosolic acid(CA), an ursane-type pentacyclic triterpene, has been assessed as a promising anticancer agent with little impact on untransformed cells. In the present study, we investigated the cytotoxic effect and underlying mechanism of CA on human retinoblastoma Y-79 cells. The viability of cells was verified by MTT assay. Cell cycle and apoptosis were evaluated by flow cytometric analysis. The expressions and activities of the related molecules were assessed by western blot analysis and luciferase assay. The results demonstrated that the treatment of CA dose-dependently induced cytotoxicity, cell cycle arrest and cell apoptosis in Y-79 cells. Furthermore, MELK-FoxM1 signaling was estimated to be involved in the cytotoxic effect of CA on Y-79 cells, and CA exerted its activity mainly through inhibition of the expression levels of MELK and FoxM1 as well as through suppression of the transcriptional activity of FoxM1 driven by itself or MELK. Our findings establish MELK-FoxM1 signaling as a promising therapeutic target for human retinoblastoma, and suggest the potential development of CA and its derivatives as novel drug candidates against this disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.