Abstract

Toll-like receptors (TLRs) function as initiators of inflammation through their ability to sense pathogen-associated molecular patterns and products of tissue damage1,2. Transcriptional activation of many TLR-responsive genes requires an initial de-repression step in which NCoR co-repressor complexes are actively removed from target gene promoters to relieve basal repression3,4. Ligand-dependent SUMOylation of liver X receptors (LXRs) potently suppresses TLR4-induced transcription by preventing the NCoR clearance step5–7, but the underlying mechanisms remain enigmatic. Here, we provide evidence that Coronin 2A (Coro2A), a component of the NCoR complex of previously unknown function8,9, mediates TLR-induced NCoR turnover by a mechanism involving interaction with oligomeric nuclear actin. SUMOylated LXRs block NCoR turnover by binding to a conserved SUMO2/3 interaction motif in Coro2A and preventing actin recruitment. Intriguingly, the LXR transrepression pathway can itself be inactivated by inflammatory signals that induce CaMKIIγ-dependent phosphorylation of LXR, leading to its deSUMOylation by the SUMO protease SENP3 and release from Coro2A. These findings reveal a Coro2A/actin-dependent mechanism for de-repression of inflammatory response genes that can be differentially regulated by phosphorylation and nuclear receptor signaling pathways that control immunity and homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.