Abstract

Abstract The establishment and maintenance of peripheral T cells is important to ensure appropriate immunity. In mammals, T cells are produced in the thymus before seeding the periphery early in life, and thereafter progressive thymus involution impairs new T cell production. Yet, peripheral T cells are maintained lifelong at approximately similar cell numbers. The question thus arises: what are the mechanisms that enable the maintenance of the appropriate number of circulating T cells, ensuring that T cell numbers are neither too low nor too high? Here, we highlight recent research suggesting a key role for coronin 1, a member of the evolutionarily conserved family of coronin proteins, in both allowing T cells to reach as well as maintain their appropriate cell population size. This cell population size controlling pathway was found to be conserved in amoeba, mice and human. We propose that coronin 1 is an integral part of a cell-intrinsic pathway that couples cell density information with prosurvival signalling thereby regulating the appropriate number of peripheral T cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call