Abstract

Coronaviruses such as SARS-CoV-2 regularly infect host tissues that express antiviral proteins (AVPs) in abundance. Understanding how they evolve to adapt or evade host immune responses is important in the effort to control the spread of infection. Two AVPs that may shape viral genomes are the zinc finger antiviral protein (ZAP) and the apolipoprotein B mRNA editing enzyme-catalytic polypeptide-like 3 (APOBEC3). The former binds to CpG dinucleotides to facilitate the degradation of viral transcripts while the latter frequently deaminates C into U residues which could generate notable viral sequence variations. We tested the hypothesis that both APOBEC3 and ZAP impose selective pressures that shape the genome of an infecting coronavirus. Our investigation considered a comprehensive number of publicly available genomes for seven coronaviruses (SARS-CoV-2, SARS-CoV, and MERS infecting Homo sapiens, Bovine CoV infecting Bos taurus, MHV infecting Mus musculus, HEV infecting Sus scrofa, and CRCoV infecting Canis lupus familiaris). We show that coronaviruses that regularly infect tissues with abundant AVPs have CpG-deficient and U-rich genomes; whereas those that do not infect tissues with abundant AVPs do not share these sequence hallmarks. Among the coronaviruses surveyed herein, CpG is most deficient in SARS-CoV-2 and a temporal analysis showed a marked increase in C to U mutations over four months of SARS-CoV-2 genome evolution. Furthermore, the preferred motifs in which these C to U mutations occur are the same as those subjected to APOBEC3 editing in HIV-1. These results suggest that both ZAP and APOBEC3 shape the SARS-CoV-2 genome: ZAP imposes a strong CpG avoidance, and APOBEC3 constantly edits C to U. Evolutionary pressures exerted by host immune systems onto viral genomes may motivate novel strategies for SARS-CoV-2 vaccine development.

Highlights

  • The COVID-19 pandemic is a serious global health emergency

  • Our investigation considered a comprehensive number of publicly available genomes for seven coronaviruses as well as studies with tissue-level zinc finger antiviral protein (ZAP) and apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3 (APOBEC3) mRNA expressions in the five host species

  • All three surveyed human coronaviruses can regularly infect host tissues where both ZAP and APOBEC3 mRNAs are expressed in abundance and they display no strong preference for tissues deficient in either ZAP or APOBEC3 transcripts

Read more

Summary

Introduction

Understanding how coronaviruses adapt or evade tissue-specific host immune responses is important in the effort to control the spread of infection and to facilitate vaccine-development strategies. Coronaviruses evolve in mammalian hosts and carry genomic signatures shaped by their host-. Antiviral proteins shape coronavirus genomes specific environments. SARS-CoV-2 regularly infects bronchiolar and type II alveolar epithelial cells in the lungs [1] and enterocytes in the small intestines [2]. Hosts provide different cellular environments with varying levels of antiviral activity. Two antiviral proteins (AVPs) that may contribute to the modification of viral genomes are the zinc finger antiviral protein (ZAP, gene name ZC3HAV1 in mammals) and the apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3 (APOBEC3) protein, both of which exhibit tissue-specific expressions [3]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.