Abstract

In recent months, the world has been affected by the infectious coronavirus disease and Iran is one of the most affected countries. The Iranian government's health facilities for an urgent investigation of all provinces do not exist simultaneously. There is no management tool to identify the vulnerabilities of Iranian provinces in prioritizing health services. The aim of this study was to prepare a coronavirus vulnerability map of Iranian provinces using geographic information system (GIS) to monitor the disease. For this purpose, four criteria affecting coronavirus, including population density, percentage of older people, temperature, and humidity, were prepared in the GIS. A multiscale geographically weighted regression (MGWR) model was used to determine the vulnerability of coronavirus in Iran. An adaptive neuro-fuzzy inference system (ANFIS) model was used to predict vulnerability in the next two months. Results indicated that, population density and older people have a more significant impact on coronavirus in Iran. Based on MGWR models, Tehran, Mazandaran, Gilan, and Alborz provinces were more vulnerable to coronavirus in February and March. The ANFIS model findings showed that West Azerbaijan, Zanjan, Fars, Yazd, Semnan, Sistan and Baluchistan, and Tehran provinces were more vulnerable in April and May.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.