Abstract

In the last years, efforts have been made towards automating semi-quantitative analysis of lung ultrasound (LUS) data. To this end, several methods have been proposed with a focus on frame-level classification. However, no extensive work has been done to evaluate LUS data directly at the video level. This study proposes an effective video compression and classification technique for assessing LUS data. This technique is based on maximum, mean, and minimum intensity projection (with respect to the temporal dimension) of LUS video data. This compression allows preserving hyper- and hypo-echoic regions and results in compressing a LUS video down to three frames, which are then classified using a convolutional neural network (CNN). Results show that this compression not only preserves visual artifacts appearance in the reduced data, but also achieves a promising agreement of 81.61% at the prognostic level. Conclusively, the suggested method reduces the amount of frames needed to assess LUS video down to 3. Note that on average a LUS videos consists of a few hundreds frames. At the same time, state-of-the-art performance at video and prognostic levels are achieved, while significantly reducing the computational cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call