Abstract

Entomopathogenic fungi are important natural regulatory factors of insect populations and have potential as biological control agents of insect pests. The cosmopolitan soil fungus Conidiobolus coronatus (Entomopthorales) easily attacks Galleria mellonella (Lepidoptera) larvae. Prompt death of invaded insects is attributed to the action of toxic metabolites released by the invader. Effect of fungal metabolites on hemocytes, insect blood cells involved in innate defense response, remains underexplored to date. C. coronatus isolate 3491 inducing 100% mortality of G. mellonella last instar larvae exposed to sporulating colonies, was cultivated at 20 °C in minimal medium. Post-incubation filtrates were used as a source of fungal metabolites. A two-step HPLC (1 step: Shodex KW-803 column eluted with 50 mM KH 2PO 4 supplemented with 0.1 M KCl, pH 6.5; 2 step: ProteinPak™ CM 8HR column equilibrated with 5 mM KH 2PO 4, pH 6.5, proteins eluted with a linear gradient of 0.5 M KCl) allowed the isolation of coronatin-1, an insecticidal 36 kDa protein showing both elastolytic and chitinolytic activities. Addition of coronatin-1 into primary in vitro cultures of G. mellonella hemocytes resulted in rapid disintegration of spherulocytes freely floating in culture medium and shrinkage of plasmatocytes adhering to the bottom of culture well. Coronatin-1 stimulated pseudopodia atrophy and, in consequence, disintegration of nets formed by cultured hemocytes. After incorporation of coronatin-1 into planar lipid membrane (PLM) ion channels selective for K + ions in 50/450 mM KCl solutions were observed. Potassium current flows were recorded in nearly 70% of experiments with conductance from 300 pS up to 1 nS. All observed channels were active at both positive and negative membrane potentials. Under experimental conditions incorporated coronatin-1 exhibited a zero current potential (E rev) of 47.7 mV, which indicates K +-selectivity of this protein. The success of the purification of coronatin-1 will allow further characterization of the mode of action of this molecule, including ability of coronatin-1 to form potassium channels in immunocompetent hemocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call