Abstract

The use of Mg2+-supplemented hyperkalemic cardioplegia preserves microvascular function. However, the mechanism of this beneficial action remains to be elucidated. We investigated the effects of Mg2+ supplementation on the regulation of intracellular calcium concentration ([Ca2+]i) and vascular function using an in vitro microvascular model. Ferret coronary arterioles (80-150 micrometer in diameter) were studied in a pressurized (40 mmHg) no-flow, normothermic (37 degrees C) state. Simultaneous monitoring of internal luminal diameter and [Ca2+]i using fura 2 were made with microscopic image analysis. The microvessels (n = 6 each group) were divided into four groups according to the content of MgCl2 (nominally 0, 1.2, 5.0, and 25.0 mM) in a hyperkalemic cardioplegic solution ([K+] 25.0 mM). After baseline measurements, vessels were subjected to 60 min of hypoxia with hyperkalemic cardioplegia (equilibrated with 95% N2-5% CO2) containing each concentration of Mg2+ ([Mg2+]) and were then reoxygenated. During hyperkalemic cardioplegia, [Ca2+]i increased in a time-dependent manner in all groups. In the lower [Mg2+] cardioplegia groups, [Ca2+]i was significantly increased at the end of the 60-min cardioplegic period (247 +/- 44 nM and 236 +/- 49 nM in [Mg2+] 0 and 1.2 mM groups, respectively; both P < 0.05 vs. baseline) with 19.6-17.2% vascular contraction. Conversely, there was no significant [Ca2+]i increase in the higher [Mg2+] cardioplegia groups and less vascular contraction (5.4-4.1%, both P < 0.05 vs. [Mg2+] 1.2 mM group). After reperfusion, agonist (U-46619, thromboxane A2 analog)-induced vascular contraction was significantly enhanced in the lower [Mg2+] cardioplegia groups (both P < 0.05 vs. control) but was normalized in the higher [Mg2+] cardioplegia groups. Intrinsic myogenic contraction was significantly decreased in the lower [Mg2+] cardioplegia groups (both P < 0.05 vs. control) but was preserved in the higher [Mg2+] cardioplegia groups. These results suggest that supplementation of the solution with >5.0 mM [Mg2+] may prevent hyperkalemic cardioplegia-related intracellular Ca2+ overloading and preserve vascular contractile function in coronary microvessels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.