Abstract

Inflammation plays an important role in the development of atherosclerotic lesions. A variety of stimuli promote atherosclerosis, including increased LDL cholesterol in blood, exposure to tobacco, diabetes mellitus, hypertension, or rheological stress. Inflammatory cells have an established role in the growth of atherosclerotic lesions. Macrophages recognize and internalise ox-LDL to eventually become lipid-laden foam cells, the hallmark cellular component of atheroma. Infiltrating CD4-T cells have a role too, by interacting with ox-LDL and other antigens. Cytokines secreted by inflammatory cells stimulate smooth muscle cells migration whilst macrophages produce metalloprotease that lead to fibrous cap rupture. The necrotic debris of died macrophages and smooth muscle cells help to continue the inflammatory process. The inflammatory response can also directly activate platelets and promote thrombus formation at the surface of complicated coronary plaques. The CANTOS trial can be waived as an innovative study promoting a novel approach of personalized medicine. In patients with previous myocardial infarction, high-sensitivity C-reactive protein level of 2 mg and normal LDL level (<70 mg/dL), canakinumab a therapeutic monoclonal antibody targeting interleukin-1β, at a dose of 150 mg every 3 months, led to a significant reduction of the primary efficacy end point: nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death at 48 months. Based on the CANTOS results, patients on statins and residual inflammatory risk as assessed by means of a high-sensitivity CRP >2 mg/l at baseline have a high risk of future cardiac events, comparable to that of statin-treated patients with suboptimal cholesterol LDL level. The inhibition of interleukin-1β by means of canakinumab, which is only one of many potential anti-inflammatory pathways, open new perspectives, showing that a selective inhibition of the inflammatory pathway may be beneficial in reducing cardiovascular risk. In a process of personalized medicine, there is need to accurately identify patients at high risk of events, to be treated with potent statins or anti-inflammatory drugs. Perhaps in the near future a more specific assessment of coronary inflammations, possibly obtained with imaging modalities (either invasive or non-invasive), will better select patients at risk of events. In this scenario, in the setting of secondary prevention, OCT may serve the scope of identifying vulnerable plaques with local aggregates of inflammatory cells. Future studies are needed to understand the clinical effectiveness of strategies based on invasive coronary assessment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.