Abstract

To evaluate the effect of hemodilution per se on coronary hemodynamics, experiments were performed in 36 anesthetized, open-chest dogs whose left anterior descending coronary artery (LAD) was perfused selectively with either normal arterial blood or arterial blood diluted with lactated Ringer solution. LAD blood flow (CBF) was measured with an electromagnetic flowmeter and its transmural distribution assessed with 15-microns radioactive microspheres. LAD perfusion pressure was set at the normal level (approximately 100 mmHg) or at 50% of that level to simulate coronary insufficiency. Dilator reserve capacity was calculated from ratio of reactive hyperemic peak flow following release of 90-s occlusion to control (preocclusion) flow. Systemic hemodynamic parameters were maintained near control values during coronary hemodilution. With perfusion pressure normal, graded hemodilution caused progressive, transmurally uniform increases in CBF that showed a nonlinear relationship to inflow hematocrit. Increased peak reactive hyperemic flow and decreased dilator reserve ratio indicated that both reduced viscosity and vasodilation contributed to increased CBF during hemodilution. Hypotension alone reduced CBF, with greater effect in the subendocardium. Additional hemodilution returned CBF to normotensive value, but relative subendocardial hypoperfusion persisted. The present study provides fundamental information on effects of hemodilution on coronary hemodynamics without the systemic responses that complicated previous studies utilizing whole body exchange transfusions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call