Abstract
Coronary heart disease (CHD) is one of the deadliest diseases and a risk prediction model for cardiovascular conditions is needed. Due to the huge number of features that lead to heart problems, it is often difficult for an expert to evaluate these huge features into account. So, there is a need of appropriate feature selection for the given CHD dataset. For early CHD detection, deep learning modes (DL) show promising results in the existing studies. This study aimed to develop a deep convolution neural network (CNN) model for classification with a selected number of efficient features using the LASSO (least absolute shrinkage and selection operator) technique. Also, aims to compare the model with similar studies and analyze the performance of the proposed model using accuracy measures. The CHD dataset of NHANES (National Health and Nutritional Examination Survey) was examined with 49 features using LASSO technique. This research work is an attempt to apply an improved CNN model for the classification of the CHD dataset with huge features CNN model with feature extractor consists of a fully connected layer with two convolution 1D layers, and classifier part consists of two fully connected layers with SoftMax function was trained on this dataset. Metrics like accuracy recall, specificity, and ROC were used for the evaluation of the proposed model. The feature selection was performed by applying the LASSO model. The proposed CNN model achieved 99.36% accuracy, while previous studies model achieved over 80 to 92% accuracy. The application of the proposed CNN with the LASSO model for the classification of CHD can speed up the diagnosis of CHD and appears to be effective in predicting cardiovascular disease based on risk features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Technology and health care : official journal of the European Society for Engineering and Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.