Abstract

Microvascular rarefaction is found in experimental uremia, but data from patients with chronic kidney disease (CKD) are limited. We therefore quantified absolute myocardial blood flow and coronary flow reserve (the ratio of peak to resting flow) from myocardial perfusion positron emission tomography scans at a single institution. Individuals were classified into standard CKD categories based on the estimated glomerular filtration rate. Associations of coronary flow reserve with CKD stage and cardiovascular mortality were analyzed in models adjusted for cardiovascular risk factors. The coronary flow reserve was significantly associated with CKD stage, declining in early CKD, but it did not differ significantly among individuals with stage 4, 5, and dialysis-dependent CKD. Flow reserve with preserved kidney function was 2.01, 2.06 in stage 1 CKD, 1.91 in stage 2, 1.68 in stage 3, 1.54 in stage 4, 1.66 in stage 5, and 1.55 in dialysis-dependent CKD. Coronary flow reserve was significantly associated with cardiovascular mortality in adjusted models (hazard ratio 0.76, 95% confidence interval: 0.63-0.92 per tertile of coronary flow reserve) without evidence of effect modification by CKD. Thus, coronary flow reserve is strongly associated with cardiovascular risk regardless of CKD severity and is low in early stage CKD without further decrement in stage 5 or dialysis-dependent CKD. This suggests that CKD physiology rather than the effects of dialysis is the primary driver of microvascular disease. Our findings highlight the potential contribution of microvascular dysfunction to cardiovascular risk in CKD and the need to define mechanisms linking low coronary flow reserve to mortality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call