Abstract

Early gestation dexamethasone (dex) administration is an ovine model of fetal programming associated with increased coronary reactivity to angiotensin II (Ang II). NADPH oxidase-dependent superoxide production plays an important role in both Ang II signaling and coronary disease. We sought to determine whether early gestation dex-exposure increases coronary reactivity to Ang II by enhancing endothelial NADPH oxidase-dependent superoxide production. Dex (0.28 mg/kg/d for 48 h) was administered to pregnant ewes at 27-28 d gestation. Dex-exposed and control offspring were studied at 4 mo of age. Coronary superoxide production was measured by lucigenin-enhanced chemiluminescence and dihydroethidium fluorescence. Coronary arteries from dex-exposed sheep had significantly enhanced vasoconstriction to Ang II, an effect abolished by either endothelial removal or preincubation with membrane-permeable superoxide dismutase and catalase. Ang II significantly increased endothelial superoxide production and NADPH oxidase activity in coronaries from dex-exposed offspring, but not controls. This programmed alteration in superoxide production was accentuated by PD123319 (AT2 antagonist), but abolished by losartan (AT1 antagonist). In conclusion, early gestation dex-exposure programs coronary reactivity to Ang II by enhancing Ang II-stimulated endothelial superoxide production. This programming effect may predispose to progressive coronary endothelial dysfunction and coronary artery disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call