Abstract

Background: Little evidence to date has described the feasibility and diagnostic accuracy of coronary computed tomography angiography (CCTA) with noninvasive fractional flow reserve (CT-FFR) in coronary vessels with resorbable magnesium scaffold (RMS). Methods: The SHERPA-MAGIC is a prospective study enrolling patients receiving RMS. The present analysis considered patients undergoing CCTA 18 months after the index procedure. CCTA images were employed to investigate reabsorption status, luminal measurements, and noninvasive FFR. Three-year follow-up was available for all patients. Results: Overall, 26 patients with a total of 29 coronary arteries treated with 35 RMS were considered. The most frequently involved vessel was left anterior descendent (LAD). Median stent length was 25 (20–25) mm, with a median diameter of 3 (3–3.5) mm. At 18-month CCTA, all scaffolded segments were patent. Complete RMS reabsorption was observed in 27 (93%, 95% CI 77–99%) cases. Median minimal lumen diameter (MLD) and area (MLA) of the scaffolded segments were 2.5 [2.1–2.8] mm and 6.4 [4.4–8.4] mm2, respectively. Median CT-FFR was 0.88 [0.81–0.91]. Only one (3.5%) vessel showed a flow-limiting CT-FFR value ≤0.80. During the 3-year follow-up, only one (4%) adverse event was observed. Conclusions: In patients undergoing RMS implantation, CCTA including noninvasive CT-FFR evaluation is feasible and allows investigation of long-term RMS performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.