Abstract

The morphology of CHF capillaries is significantly disordered and tortuous compared with control (CSI: 0.35 ± 0.02 for 61 images from 7 CHF rats; 0.58 ± 0.02 for 32 images from 7 control rats; P < 0.01). Estimated capillary resistance in CHF is elevated by 173% relative to control, while blood flow rate and blood velocity are 56 and 43% slower than control. Capillary resistance increased 67% due to the significantly narrower capillary diameter in CHF, while it increased an additional 105% due to tortuosity. The significant structural abnormalities of CHF coronary capillaries may drastically stagnate hemodynamics in myocardium and increase resistance to blood flow. This could play a role in the development of CHF. NEW & NOTEWORTHY In the present study, coronary capillary tortuosity was measured by applying Matrix Laboratory software to scanning electron microscope images of capillaries in a rat model of congestive heart failure. Stagnant blood flow in coronary capillaries may play a role in the development of congestive heart failure. The application of computer modeling to histological and physiological data to characterize the hemodynamics of coronary microcirculation is a new area of study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call