Abstract
In dogs, only combined blockade of vasodilator pathways [via adenosine receptors, nitric oxide synthase (NOS) and ATP-sensitive K+ (KATP) channels] results in impairment of metabolic vasodilation, which suggests a redundancy design of coronary flow regulation. Conversely, in swine and humans, blocking KATP channels, adenosine receptors, or NOS each impairs coronary blood flow (CBF) at rest and during exercise. Consequently, we hypothesized that these vasodilators act in parallel rather than in redundancy to regulate CBF in swine. Swine exercised on a treadmill (0-5 km/h), during control and after blockade of KATP channels (with glibenclamide), adenosine receptors [with 8-phenyltheophylline (8-PT)], and/or NOS [with Nomega-nitro-l-arginine (l-NNA)]. l-NNA, 8-PT, and glibenclamide each reduced myocardial O2 delivery and coronary venous O2 tension. These effects of l-NNA, 8-PT, and glibenclamide were not modified by simultaneous blockade of the other vasodilators. Combined blockade of KATP channels and adenosine receptors with or without NOS inhibition was associated with increased H+ production and impaired myocardial function. However, despite an increase in O2 extraction to >90% during administration of l-NNA + 8-PT + glibenclamide, vasodilator reserve could still be recruited during exercise. Thus in awake swine, loss of KATP channels, adenosine, or NO is not compensated for by increased participation of the other two vasodilator mechanisms. These findings suggest a parallel rather than a redundancy design of CBF regulation in the porcine circulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of physiology. Heart and circulatory physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.