Abstract

Polymer- and magnesium-based bioresorbable scaffolds were developed with the intention of restoring a functionally intact arterial wall following the scaffold’s biodegradation, avoiding the limitations of coronary stenting associated with persistent vasomotor dysfunction and sustained inflammation leading to in-stent neo-atherosclerosis. Although initial experimental observations encouraged the development of first-in-man registries and the execution of larger randomized trials, clinical results from treating relatively non-complex lesions with these technologies failed to demonstrate any incremental benefit. Furthermore, the significantly higher rates of scaffold thrombosis with the current generation scaffolds led to existing polymer-based technologies being withdrawn from the US clinical market. This article provides an overview of the preclinical and clinical lessons learnt from the recently conducted ABSORB trials using the first-generation Absorb bioresorbable vascular scaffold (Abbott Vascular), which is the most investigated coronary scaffold in clinical trials, and reflects on whether these technologies are a viable alternative to contemporary metal stents for coronary revascularization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call