Abstract

Identifying patients at increased risk of coronary artery disease, before the atherosclerotic complications become clinically evident, is the aim of cardiovascular prevention. Imaging techniques provide direct assessment of coronary atherosclerotic burden and pathological characteristics of atherosclerotic lesions which may predict the progression of disease. Atherosclerosis imaging has been traditionally based on the evaluation of coronary luminal narrowing and stenosis. However, the degree of arterial obstruction is a poor predictor of subsequent acute events. More recent techniques focus on the high-resolution visualization of the arterial wall and the coronary plaques. Most acute coronary events are triggered by plaque rupture or erosion. Hence, atherosclerotic plaque imaging has generally focused on the detection of vulnerable plaque prone to rupture. However, atherosclerosis is a dynamic process and the plaque morphology and composition may change over time. Most vulnerable plaques undergo progressive transformation from high-risk to more stable and heavily calcified lesions, while others undergo subclinical rupture and healing. Although extensive plaque calcification is often associated with stable atherosclerosis, the extent of coronary artery calcification strongly correlates with the degree of atherosclerosis and with the rate of future cardiac events. Inflammation has a central role in atherogenesis, from plaque formation to rupture, hence in the development of acute coronary events. Morphologic plaque assessment, both invasive and non-invasive, gives limited information as to the current activity of the atherosclerotic disease. The addition of nuclear imaging, based on radioactive tracers targeted to the inflammatory components of the plaques, provides a highly sensitive assessment of coronary disease activity, thus distinguishing those patients who have stable disease from those with active plaque inflammation.

Highlights

  • Atherosclerosis is the primary cause of coronary artery disease (CAD) [1,2]

  • This is confirmed by the observation that large areas of coronary calcium detected by computed tomography (CT) scan do not show increased 18 F-NaF uptake

  • Identification of coronary atherosclerotic plaque burden and their composition are of great clinical significance to assess the extent of disease and the appropriate treatment

Read more

Summary

Introduction

Atherosclerosis is the primary cause of coronary artery disease (CAD) [1,2]. Most acute coronary events occur from atherosclerotic plaque rupture or erosion causing arterial thrombosis [3]. The aim of performing imaging diagnostic tests is the assessment of patients at risk of acute coronary events associated with plaque formation, before atherosclerotic complications occur. This objective is based on the identification of coronary. Diagnostics 2020, 10, 65 atherosclerotic burden, its extent and pathological characteristics which are closely associated with progression and rupture of vulnerable plaques. In high-risk patients, intravascular imaging provides accurate assessment of vulnerable plaques and early stage of their development

Pathology
Plaque Morphology
Disease Activity Imaging
Angiography
Intravascular
Risk of Complications Associated with Coronary Atherosclerosis Imaging
Background
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.